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Abstract Aging is a multifactorial process leading to
changes in skeletal muscle quantity and quality, which cause
muscle weakness and disability in the aging population.
This paper discusses the reasons for muscle weakness—
and its biological and physiological mechanisms—in the
elderly and describes the role of sarcopenia and dynapenia,
and the possibilities to modify the age-associated decline in
muscle function and decelerate the development of muscle
weakness and disability. Resistance and endurance training
are effective measures of exercise therapy in the elderly,
which improve muscle metabolism and thereby muscle
function and life quality.
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Introduction

Sarcopenia has been considered to be a minor modifiable
risk factor for health outcomes, and it plays a significant role
in the etiology of disability [14, 45]. Sarcopenia is under-
stood as an age-related loss of muscle mass, muscle
strength, and physical function [23]. The term sarcopenia
has been defined as the age-related loss of muscle mass and
dynapenia as the age-related loss of muscle strength [13].

The rate of muscle loss has been established to range
from 1 to 2 % per year past the age of 50 years, as a result of
which 25 % of people under the age of 70 years and 40 % of

those over the age of 80 years are sarcopenic [34, 52]. If the
loss of muscle mass is more than 5 % in 6–12 months, the
term mypenia has been suggested for use [25]. Aging and
inactivity or disuse is associated with a decline in muscle
mass, structure, and strength [23, 77]. A sedentary lifestyle,
bed rest, spaceflight, and hindlimb suspension lead the
skeletal muscle to microcirculatory disturbances, atrophy,
protein loss, changes in contractile properties, and fiber-
type switching [23, 33, 63, 95]. In both young and aged
skeletal muscle, oxidative stress increases in response to
unloading [84] and may have an important role in mediating
muscle atrophy. Unloading results in a decrease in the
number of myonuclei and an increase in the number of
apoptotic myonuclei in skeletal muscle [46].

Heat-shock protein 70 inhibits caspase-dependent and
caspase-independent apoptotic pathways and may function
in the regulation of muscle size via the inhibition of necrotic
muscle fiber distribution and apoptosis in aged muscle [59].
The decline in muscle mass primarily results from type II
fiber atrophy and loss in the number of muscle fibers.
Increased variability in fiber size; accumulation of non-
grouping, scattered, and angulated fibers; and the expansion
of extracellular space are characteristic of muscle atrophy
[8]. Beyond the loss of muscle size due to reduced fiber
number and myofibrillar proteins that underlie muscle
weakness in the elderly [13, 23], impairments in neural
activation have been found, as well as potential alterations
in other muscular properties that may reduce contractile
quality defined as a reduction in involuntary force produc-
tion per unit muscle size [31, 86, 100]. The functional and
structural decline of the neuromuscular system is a recog-
nized cause of decreased strength, impaired performance of
daily activities, and loss of independence in the elderly [51].
Loss of muscle strength in older adults is weakly associated
with the loss of lean body mass [29]. It means that muscle
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weakness in older adults is more related to impairments in
neural activation and/or reductions in the intrinsic force-
generating capacity of skeletal muscle [51].

Research data suggest that the number and magnitude of
associations for low physical performance or disability are
greater for low muscle strength than low muscle mass [29].
At the same time, it has been shown that higher aerobic
capacity is related to an increase in the abilities of cardio-
vascular factors in the elderly [73]. But it is still unclear
whether aerobic exercise training is superior to resistance
training or other exercise models in altering effect on the
elderly [58]. However, it is clear that purposeful life-long
physical activity (exercise therapy) has been proven to have
a positive effect on health via many disease-specific mech-
anisms and seems to provide the highest health benefits
[44].

The purpose of the present review was to analyze the
reasons for aging skeletal muscle weakness and the role of
sarcopenia and dynapenia in this process and to evaluate
possibilities for decelerating the development of muscle
weakness and disability in the aging population. We also
intend to examine the decelerative effect of exercise therapy
on the structure and function of aging skeletal muscle.

Etiology of muscle weakness and disability in the elderly

Sarcopenia

Aging leads to changes in skeletal muscle quantity and
quality, and these changes are a major cause of the increased
prevalence of disability in the aging population [23, 24, 71,
77]. In addition to sarcopenia, osteopenia and organopenia
are characteristic of increasing age [50] and may contribute
to the development of disability.

About two decades ago, sarcopenia was already defined
as the age-related loss of muscle mass [37]. Nowadays, we
know that muscle mass and strength are causally linked and
that changes in mass are responsible for changes in strength
[29]. About three decades ago, it was shown that muscle
strength does not solely depend on muscle mass [56]. In
elderly people, the decline in muscle strength is more rapid
than the concomitant loss of muscle mass [11, 19, 28, 31],
and loss of muscle mass during disuse is associated with
loss of strength only in the range of 10 % [12, 15]. This
standpoint is also supported by the experiments where mus-
cle mass is gained but the age-related decline in muscle
strength is not prevented [19].

Thus, the aforementioned standpoint that the loss of
muscle strength in elderly people is weakly associated
with the loss of lean body mass demonstrates that the
loss of strength is more related to impairments in the
neural activation of muscle [29].

Regeneration capacity of sarcopenic muscle

Aging is a physiological process that includes a gradual
decrease in skeletal muscle mass, strength, and endurance
coupled with an ineffective response to tissue damage [18].
Aging and a reduced physical level are mainly responsible
for the progressive decline in several physiological capaci-
ties in the elderly [39]. Decrease in the protein synthesis rate
is affected by the translational process occurring in older
human skeletal muscle, whereas the transcriptional process
appears to be unaltered when compared with those in youn-
ger men [69]. Skeletal muscle fibers have a remarkable
capacity to regenerate [5, 69], and this depends on the
number of satellite cells under the basal lamina of fibers
and their oxidative capacity [83]. Autografting of gastroc-
nemius muscle in old rats shows that regeneration proceeds
at a significantly slower rate in comparison with young
animals [38]. A decrease in the number of satellite cells
has been shown in fast-twitch muscle fibers of elderly sub-
jects [98]. In sarcopenic muscle, the decrease in the satellite
cell pool and the length of telomeres might explain the
higher prevalence of muscle injuries and delayed muscle
regeneration [39]. Functionally heterogeneous satellite cells
with different properties may be recruited for different tasks,
for example, muscle regeneration [49, 61, 92].

After severe damage, muscles in old rodents did not
regenerate as well as muscles in adults [10, 17]. The de-
creased regeneration capacity of muscles is likely due to
extrinsic causes rather than an intrinsic limitation of muscles
[10, 17]. A contraction-induced muscle injury to weight-
bearing muscles in old rodents causes deficits in muscle
mass and force [67]. It has been shown that the degradation
rate of contractile proteins in rat skeletal muscle during
aging increased about two times, and muscle strength and
motor activity decreased at the same time [38]. Aging-
induced sarcopenia is a result of decreased synthesis and
increased degradation of myofibrillar proteins, which leads
to the slower turnover rate of muscle proteins, particularly
contractile proteins, and this, in turn, leads to the decrease in
muscle strength [23, 24, 38]. It has been shown that increas-
ing dietary protein intake in combination with the use of
anabolic agents attenuates muscle loss [23]. In essence,
sarcopenia is an imbalance between protein synthesis and
degradation rate (Fig. 1).

Dynapenia

As muscle size is not the sole contributor to loss in physical
activity in the elderly, it is important to evaluate all aspects
in the etiology of disability. In the literature, there are many
descriptions for the identification of risk factors for loss in
physical activity among the elderly [6, 14]. The decline in
muscle strength is a result of a combination of neurologic
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and muscular factors, such as the impairment of neural
activation due to a reduction in descending excitatory drive
from supraspinal centers, suboptimal motor unit recruit-
ment, and neuromuscular transmission failure [14, 31, 86,
100]. Muscle atrophy, reduced contractile quality due to
changes in the myofibrillar machinery, and infiltration of
adipocytes into muscle fibers are also reasons for the de-
crease of muscle strength and physical activity [14, 19, 72,
77]. Taking all these into account, Clark and Manini [13, 14]
described the age-related loss of muscle strength using the
term dynapenia.

A decrease in skeletal muscle strength contractile protein
synthesis rate and an increase in muscle protein degradation
rate demonstrate that the contractile machinery in the elderly
is structurally and functionally damaged (Fig. 1). Such an
integral indicator of contractile protein metabolism as their
turnover rate shows that in senescent rats, myosin heavy
chain (MyHC) turned over about 35 % and actin about 10 %
more slowly than in young elderly [38, 76]. Functional
rearrangements in the contractile apparatus of senescent rats
also show a decrease in MyHC fastest isoform relative
content in skeletal muscle [64]. Changes in MyHC isoform’s
composition in skeletal muscle may be related to slower
ATP splitting in the elderly because of a decrease in muscle

mitochondrial ATP production [1]. It has been demonstrated
that in both humans and rodents, skeletal muscle mitochon-
drial dysfunction occurs with age [4, 70]. The reason is a
decrease in mitochondrial DNA copy numbers, decreased
mRNA in genes encoding muscle mitochondrial proteins
[4], reduced oxidative enzyme activity, and a decreased
mitochondrial protein synthesis rate [82]. Neuronal or
chemical mediators may also play a role in signaling
hypothalamus from the periphery to stimulate the center
of sympathetic nerves signaling the paraventricular nu-
cleus of the hypothalamic center [57]. It is generally
known that skeletal muscle protein synthesis in humans
decreases with age [3, 70, 81, 102]. Studies have shown
that the synthesis rate of MyHC and mitochondrial
proteins decreases, but others like sarcoplasmic proteins
have a relatively high synthesis rate in the elderly [57].
It has been shown that the age-related decrease in
muscle protein is not a global effect on all proteins,
but is selective for certain proteins [57]. Proteins that
have a faster turnover rate contribute more to the skel-
etal muscle synthesis rate despite their small amount.
Proteins which constitute a major part of muscle pro-
teins but have a slow turnover rate play a smaller role
in the synthesis rate of skeletal muscle proteins [57].
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Effect of unloading and reloading on muscle quantity
and quality in the elderly

Unloading

The gradual development of functional limitations over an
extended period of time is affected by a natural age-related
decline in physical and biological properties, which already
starts in midlife and increases the risk for a decline in
physical functioning in later life [99].

During aging, the physical system suffers to a different
extent and rate in diverse parts of the body. This results in
reduced functional reserve, a decrease in vital capacity,
deterioration of the capillary blood supply, and a decrease
in muscle mass [53].

Due to living a sedentary life in older age, inactivity can
lead to a loss of functional health due to deficits in strength,
endurance, and flexibility [53]. “Use it or lose it” has been
shown to be a key rule for maintaining physical indepen-
dence in the elderly [68]. One of the reasons for the devel-
opment of muscle weakness in the elderly is decreased
physical activity [66]. Inactivity and aging cause a marked
relative increase in the endo- and perimysial connective
tissue, which results in changes in the mechanical properties
of the skeletal muscle [22]. Myofibrillar basal lamina
becomes thicker and more rigid with age, and increased
cross-linking of collagen molecules makes fibrils more re-
sistant to degradation by collagenase [30]. The muscle tissue
response to unloading seems to more expressed than the
connective tissue response [41, 48]. The connective struc-
tures are protected from rapid changes in tissue mass, while
the muscle, which is known to act as a protein store of the
organism, is subject to substantial and fast changes in tissue
mass. Despite the small changes in connective tissue mass,
important changes occur in the tissue structures during
unloading and aging [77].

Unloading has been shown to decrease the protein syn-
thesis rate in skeletal muscle by 46 % [27]. Decreased
muscle mass, reduction in strength, and aerobic capacity
are the typical changes in the elderly during bed rest [23].
An increase of dietary protein intake attenuates protein
degradation rate during bed rest [87] and, in combination
with anabolic agents, prevents muscle loss [23, 40, 91].

Reloading

Due to the differences in the plasticity of young and old
skeletal muscle, young muscle mass increases faster than
old after reloading [88], but the recovery of muscle strength,
both in young and old, takes more time than gain of muscle
mass [65]. Regaining muscle strength after unloading takes
longer in old than in the young [88]. The recovery of
locomotory activity after hindlimb suspension is as fast as

the recovery of muscle strength and is related to the regen-
eration of muscle structures from disuse atrophy [36]. Mus-
cle metabolism can be restored faster than the full recovery
of muscle function as the cross-sectional area and myonu-
clear domain size require more time for restoration of neural
and mechanical properties of muscle [20, 60].

It has also been proposed that aging militates against the
loss of collagen stability due to mechanical overextension
[101], but the growth hormone is more important in
strengthening the matrix tissue than forming muscle fiber
hypertrophy in aged musculotendinous tissue [21]. After
severe damage, muscle in old rodents does not regenerate
as well as muscle in adults [17]. A contraction-induced
muscle injury to weight-bearing muscles in old age causes
deficits in muscle mass and force [67]. The fact that an
increase in muscular strength lags behind that in muscular
mass shows that an increase in muscular mass contains
functionally immature muscle fibers during the recovery
process following disuse atrophy [77].

Effect of exercise therapy on muscle weakness
in the elderly

Resistance exercise training

Muscle weakness is the main factor in the dysfunction of
locomotory activity and balance not only in the elderly but
also during the first months of a newborn’s life activity. It
has been shown that an increase in muscle strength is in
good agreement with the development of the baby’s con-
trolled movements during the first 5 months of life [79].
This fact in turn shows the importance of muscle strength in
human everyday activity. It has been demonstrated that
exercise programs incorporating balance training are effec-
tive in reducing falls in older people [90].

Elderly people were 59 % weaker than young, but a 6-
month resistance training improved muscle strength in the
old group and was only 38 % lower than in the young group
[54]. During aging, muscle power declines more rapidly
than strength [55]. Resistance training improves the
power-producing capacity of skeletal muscle fibers in the
elderly due to the increase of contractile velocity [96].

Resistance training is a strong stimulus for skeletal mus-
cle metabolism in the elderly, particularly for the contractile
apparatus as the fractional synthesis rate of myofibrillar
proteins in the skeletal muscle increases [64]. Compensatory
hypertrophy of plantaris muscle by tenotomy of the gas-
trocnemius muscle decreased the relative content of MyHC
IIb and IIa isoforms in old rats. Simultaneous compensatory
hypertrophy and heavy resistance training increased the
proportion of MyHC IIb and decreased the relative content
of MyHC IId isoform in old animals’ muscles [64]. If the
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intensity and volume ratio is properly regulated in heavy
resistance training, it may prevent the age-related decrease
in the relative content of MyHC IIb isoform in skeletal
muscle.

In the elderly, skeletal muscle atrophy and mitochondrial
dysfunction coexist and maybe causally related [7]. There is
convincing evidence of the existing link between muscle
mitochondrial dysfunction and insulin resistance in the el-
derly [2]. It has been shown that resistance training in older
adults can increase mitochondrial capacity in skeletal mus-
cle [62]. Muscle contraction induce(s) the mobilization of
local lipid reserves in obese skeletal muscle and promotes
beta-oxidation while discouraging glucose utilization [93].
Resistance training helps elderly skeletal muscle preserve
fat-free mass during body mass loss [9].

Rapid recovery from resistance exercise in young age
supports the increase in muscle strength [77], but recovery
from more damaging resistance exercise is slower as a result
of age, whereas there are no age-related differences in
recovery from less damaging metabolic fatigue [26]. Recent
evidence suggests that the difference in the regenerative
capacity of skeletal muscle between young and very old rats
is only about 10 %, but regeneration of the myofibrillar
apparatus is much slower in the elderly [38].

This is obviously related to the greater amount of resis-
tance exercise-induced damage in skeletal muscle as there is
relatively slow repair of muscle tissue after exercise in the
elderly [26]. Finding possibilities to rehabilitate the loss of
physical function by exercise therapy in the elderly is one of
today’s burning issues due to an increase in elderly people in
the society.

Changes in the turnover rate of muscle proteins
during resistance exercise training

Resistance exercise may modify muscle fiber structure and
metabolism and promote the release of growth factors and
other signaling molecules, such as nitric oxide, which acti-
vates the satellite cells through the paracrine system [94].
Myosatellites, which develop further into myoblasts, con-
tain lots of ribosomes, branching granular sarcoplasmic
reticulum with widened canals, and a Golgi apparatus.
Myosatellitocytes may also contain centrioles, and this con-
firms that these cells are divided by mitosis [78]. Myosatel-
litocytes sarcoplasm close to the nucleus contains bundles of
filaments, which may turn out to be myofilaments [97]. In
adults and aged persons, resistance training causes muscle
hypertrophy in two ways: firstly, damaged fibers regenerate
as a result of the fusion with the satellite cells; secondly,
satellite cells divide and, later, myosymplasts fuse with each
other and form myotubes [78]. It has been shown that
contractile proteins turned over faster in type I and IIA
muscle fibers than in IIB fibers, and the turnover rate of

skeletal muscle proteins depends on the functional activity
of the muscle [78]. The turnover rate of contractile proteins
in skeletal muscle seems to be related to age-related changes
in the composition of the MyHC isoform [77]. Resistance
training increases the turnover rate of contractile proteins,
but the changes in old age are relatively slower than in
young age [77, 78].

Even if it does not cause hypertrophy of muscle fibers,
resistance exercise in the aging population avoids muscle
atrophy as the myonuclear number increases slightly as a
result of the fusion of satellite cells with damaged fibers. Via
this or as a result of myoblasts’ fusion forming myotubes,
which develop into new muscle fibers, muscle functional
capacity increases. Exercise causes adaptational changes in
the contractile apparatus, primarily in newly formed fibers
via the remodeling of myosin isoforms. A faster turnover
rate of contractile proteins in resistance-trained muscles
supports the strength generation capacity of muscle fibers
in elderly skeletal muscle (Fig. 2). Naturally, this process is
more effective in muscle fibers with higher oxidative capac-
ity than in muscle fibers with low oxidative capacity.

Endurance exercise training

Structural and functional rearrangements in skeletal muscle
depend on the oxidative capacity of the fibers [78]. The integral
indicator of muscle protein metabolism, muscle protein turn-
over, fiber recovery from exercise-induced injury, and regener-
ation capacity is faster in fibers with higher oxidative capacity
[74, 75, 80]. As a physiological process, aging also includes a
gradual decrease in skeletal muscle endurance [18, 77], and this
is related to the reduction in fitness. A decrease in physical
fitness gives theoretical background to use both endurance and
resistance exercise for health outcomes in the elderly. The
turnover of muscle protein provides a mechanism by which
resistance training can change the contractile protein renewal in
accordance with the needs of the contractile machinery of
skeletal muscle [75]. As the oxidative capacity of skeletal
muscle decreases in the elderly, endurance training seems to
be effective in its restoration as it stimulates mitochondrial
biogenesis and improves their functional parameters [35, 47].
A combination of endurance and resistance exercise in the
elderly for the purpose of increasing muscle oxidative capacity
and the contractile protein turnover rate is an effective measure
for enhancing quality of life in the elderly by improving skeletal
muscle functional capacity and plasticity (Fig. 2). It has recently
been shown that the individual development of muscle plastic-
ity in the elderly makes it possible to modify the age-associated
decline even in maximal physical performance at least for some
time [89]. The higher aerobic capacity in trained elderly people
is related to an increase in the abilities of the cardiovascular
system and, to a lesser extent, to an increase in muscle mito-
chondrial concentration and capacity [73]. Here, the lesser
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extent means that regular aerobic activity provides a foundation
for an increase of muscle oxidative capacity in the elderly. At
this point, it is useful to repeat the viewpoint of Suominen [89]
that adequate physical performance is an essential element of a
healthy and productive life among the elderly. Although factors
such as health, physical function, and independence constitute
components of the quality of life in the elderly, physiological
functioning is significant in determining the ability to maintain
independence and an active interaction with the environment
[85]. The mode of exercise plays a significant role in elderly
training. It has shown that high-intensity aerobic exercise train-
ing efficiently reduced visceral fat in elderly and overweight
adults [16]. However, with older age, managing everyday
activities becomes less self-evident, although there are gender
differences in physical functioning [43]. Functional limitation
in old age is an objective measure of the consequences of
disease and impairment [32]. There is increasing need in the
society to encourage elderly people to follow the mot of
Kramer and Erickson [42] for successful aging to use wide-
spread participation in low-cost and low-tech exercise to further
improve their fitness and reduce the risk of disability.

Summary and conclusions

Both sarcopenia and dynapenia are risk factors for health
outcomes and play a significant role in the etiology of
disability in the elderly. As a complex of factors contributes

to the development of muscle wasting and weakness in the
elderly, it is complicated to find one certain measure for
rehabilitation. As lack of strength is one of the main reasons
for muscle weakness, it seems to be most realistic to use
resistance training for this purpose in the elderly. Resistance
training is a strong stimulus for muscle metabolism in the
elderly, particularly for the contractile machinery of muscle.
The contractile protein turnover rate provides a mechanism
by which the effect of exercise-caused changes can be
assessed in accordance with the needs of the contractile
apparatus. As the contractile protein turnover rate depends
on the oxidative capacity of muscle and muscle oxidative
capacity decreases in the elderly, it is obvious that endur-
ance exercise stimulates an increase in the oxidative capac-
ity of skeletal muscle by an increase in mitochondrial
biogenesis and supports faster protein turnover during resis-
tance training, as a result of which muscle function, and
thereby quality of life, in the elderly improves. The regen-
eration of skeletal muscle from the damage caused by exer-
cise is faster in muscles with higher oxidative capacity.
Using both resistance and endurance exercise in the elderly
makes it possible to modify the age-associated decline in
muscle function and decelerate the development of muscle
weakness.
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